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In this paper, we analyze the scaling properties of a model that has as limiting cases the diffusion-limited
aggregation �DLA� and the ballistic aggregation �BA� models. This model allows us to control the radial and
angular scaling of the patterns, as well as their gap distributions. The particles added to the cluster can follow
either ballistic trajectories, with probability Pba, or random ones, with probability Prw=1− Pba. The patterns
were characterized through several quantities, including those related to the radial and angular scaling.
The fractal dimension as a function of Pba continuously increases from df �1.72 �DLA dimensionality� for
Pba=0 to df �2 �BA dimensionality� for Pba=1. However, the lacunarity and the active zone width exhibit a
distinct behavior: they are convex functions of Pba with a maximum at Pba�1/2. Through the analysis of the
angular correlation function, we found that the difference between the radial and angular exponents decreases
continuously with increasing Pba and rapidly vanishes for Pba�1/2, in agreement with recent results concern-
ing the asymptotic scaling of DLA clusters.
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I. INTRODUCTION

Nonequilibrium growth models of clusters of identical
particles have attracted a lot of attention in the past two
decades �1,2�. Certainly, the most studied one is the
diffusion-limited aggregation �DLA� model proposed by
Witten and Sander �3� for the modeling of metal particle
aggregation. In spite of its simplicity, this model is a note-
worthy example in which a very simple algorithm generates
disordered patterns with nontrivial scaling �4–7�. In the DLA
model, the particles are released at points distant from the
cluster and follow random walks of unitary steps, which are
stopped when these particles contact the cluster and irrevers-
ibly aggregate to it. Another important aggregation model
with nontrivial scaling is the ballistic aggregation �BA� �8,9�,
in which ballistic trajectories at random directions replace
the random walks characteristic of the DLA model. Differ-
ently from the DLA case, the patterns generated by the BA
model are asymptotically homogeneous �fractal dimension
equal to the space dimension�, but this asymptotic regime is
characterized by a power law approach �9,10�.

Several generalized versions of the DLA model were pro-
posed �1�, including those concerned with the transition be-
tween DLA and BA models �10–12�. In a recent work, Fer-
reira et al. �10� built a model in which the particles follow
random trajectories with drifts at random directions. The bias
is controlled by a parameter � that, when varied, leads the
model from BA ��=0� to DLA ��=1�. The clusters are as-
ymptotically nonfractal �exhibiting the BA-like scaling with
fractal dimension df =2� for any ��1, but following a DLA-
like scaling �df �1.71� for short length scales. Using the con-
cept of scaling functions, these ideas can be summarized as

M�l� = ldDLAf�l/�� , �1�

in which

f�x� � �const if x � 1

xd−dDLA if x � 1.
� �2�

In these equations, l is the size of the cluster, d is the space
dimension, dDLA is the DLA fractal dimension, and � is
the characteristic crossover radius from DLA- to BA-like
scaling regimes. The last diverges as ��	1−�	−�, where
�=0.61±0.01. This transition between DLA and BA regimes
was introduced by Meakin �13� in an early generalization of
the DLA model. This model is very similar to that analyzed
by Ferreira et al. �10�. The main difference is that the drift of
all trajectories is fixed at a lattice direction in Meakin’s
model, in which, along the trajectory, the particle is moved
one step in the drift direction with probability P, or moves at
random to one of its four nearest-neighbor sites with prob-
ability 1− P. The model generates patterns with a growth
tendency along the opposite direction of the drift. In this
work, Meakin argued that the crossover radius scales as
�= P−1 while Nagatani �14�, through a real-space
renormalization-group approach, found �� P−1/�d−df�.

Early studies indicated that the DLA aggregates exhibit
distinct scaling exponents for radial and angular correlations.
The two-point correlation function 	, which gives the prob-
ability to find a particle at a distance between r and r+
r,

r�r, from another particle, is given by �1�

	�r� � r−�r, �3�

where �r=d−df. For off-lattice DLA, the exponent found
was �r�0.29. In turn, the angular correlation function �R,
which gives the probability to find two particles with angular
separation  measured in relation to the origin at a distance
R, follows a power law decay for small ,*Email address: silviojr@ufv.br
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�R�� � −�. �4�

For uniform self-similar fractals �r=�, but this was not ob-
served for the DLA model, for which ��0.41 �15�.

In this work, we used careful simulations to analyze the
transition between DLA- and BA-like regimes in a model
where both random and ballistic trajectories are included.
Differently from the previously described models �10,13�,
the trajectories are not characterized by distinct behaviors at
short �random� and large �ballistic� scales. Indeed, we are
interested in the scaling of clusters grown from a mixture of
particles, which can follow either ballistic or random trajec-
tories. The paper outline is the following. In Sec. II, the
algorithm and the computer implementations are described.
In Sec. III, the quantities describing the scaling of the cluster
are introduced and the corresponding results discussed. Fi-
nally, we summarize the results of the paper in Sec. IV.

II. MODEL AND COMPUTER IMPLEMENTATION

The present model is concerned with the aggregation of
particles which can follow either ballistic or random trajec-
tories. Notice that there are two kinds of independent trajec-
tories, which do not exhibit both random and ballistic com-
ponents simultaneously, as those used in Ref. �10�. Two-
dimensional off-lattice simulations starting from a single
particle of unitary radius stuck to the origin were considered.
The model’s rules are very simple. For each time step, a kind
of trajectory, Brownian or ballistic, is chosen with probabili-
ties Prw and Pba, respectively. Then, particles are launched
one at a time using the selected rule until one of them sticks
to the cluster. Notice that in these rules we are taking into
account only the particles that are added to the cluster and
not those that get too far from the cluster and are excluded.

The particles are released at a launching circle of radius
rl�rmax centered at the origin, where rmax is the largest dis-
tance from the origin among all the aggregated particles. As
in the off-lattice DLA model �18�, the cluster grows when a
walker contacts any particle of the aggregate and sticks to the
corresponding position. Also, if the walker crosses a killing
circle of radius rk�rl centered at the origin, it is discarded
and a second one is released at a new random point on the
launching circle. The previously introduced variables �rl and
rk� should be as large as possible. However, computational
limitations restrict their values. For the sake of convenience,
we introduce a new variable 
 by the definition rl=rmax+
.
The choices of 
 and rk depend on the kind of trajectory. For
random walks, rl can be a few particle diameters larger than
rmax, whereas rk must be very large �1�. Consequently, we
used 
=5 and rk=100rmax. For ballistic trajectories, undesir-
able shadow effects are reduced as rl increases �19,20�. Thus,
we used 
=100rmax+800. Finally, ballistic trajectories which
cross the launching circle cannot turn back inside the circle,
and so we chose rk=rl+2.

Large-scale off-lattice simulations with rigorous statistical
sampling require very efficient algorithms. First, it is neces-
sary to improve the efficiency of the routines for the trajec-
tories. In the case of random walks, we used a standard
method, in which particles outside the launching circle take

long steps �out if these steps do not bring up a particle inside
the launching circle. An adequate choice is �out=max�r
−rmax−5,1�, where r is the distance of the walker from the
origin. Also, in the inner region of the circle delimiting the
cluster there are large empty regions. So, we adopted an
algorithm like those used by Ball and Brady �21�, in which
particles inside the launching circle can take a long step of
length �in if they cannot cross any part of the aggregate along
this long step.

An efficient determination of �in is decisive in order to
guarantee the success of the procedure. In order to accom-
plish this, we define a coarse-grained mesh with cells of size
2�in�2�in as illustrated in Fig. 1. The boxes depicted in gray
are those in which the random walk could reach the cluster
after a step of length �in and, consequently, a long step is
forbidden. In this case, we have two options: the particle
executes a unitary step or tries a shorter step of length �in� ,
where 1��in� ��in, using another auxiliary coarse-grained
mesh. Indeed, we can use several auxiliary meshes in order
to maximize the algorithm efficiency. In this work, three val-
ues, �in=8, 16, and 32, were used. Through this procedure,
large simulations become up to two orders of magnitude
faster than those using only long steps outside the launching
circle.

Finally, an efficient search mechanism for determining
when the walker does or does not have a contact with the
aggregate is indispensable. We used two procedures for this
task. In the first one, the particle positions are mapped on a
square lattice by the approximation of their real coordinates
to the nearest integer, producing an on-lattice auxiliary clus-
ter. So, the verification of the contact is done only if the
particle is inside a nearest or a next-nearest empty site neigh-

FIG. 1. Schematic representation of the “optimized random tra-
jectories.” We show a DLA aggregate and a mesh of cells 2�in

�2�in. Long steps are forbidden in the gray boxes and allowed in
the white ones. Also, two long steps are illustrated.
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boring the on-lattice auxiliary cluster. In the second optimi-
zation procedure, a coarse-grained mesh of 8�8 cells was
used to limit the verification on a region near the walker
position.

III. RADIAL AND ANGULAR SCALING

The model exhibits a smooth transition from DLA to BA-
like growth patterns as the parameter Pba varies from 0 to 1.
In Fig. 2, in which growth patterns for distinct probabilities
Pba are shown, one can observe clusters that are qualitatively
very similar to the DLA aggregates for Pba�0.5, whereas
BA-like clusters are observed for Pba�0.95. These patterns
were grown until a part of them reaches the edge of a region
of size L�L, where L=750. Notice that Pba=0.5 is an im-
portant case, in which half of the particles were grown using
the DLA model and the another half were grown using the
BA model.

The scaling properties of the clusters were characterized
by the radial and angular distributions of the particles, as
well as the size of their active �growing� zone. We grew 2D
off-clusters limited by a region of size 104�104. Again, the
simulations were stopped when the cluster reaches the border
of this region. The radial scaling was characterized by the
fractal dimension and the lacunarity �1�. The fractal dimen-
sion df and the lacunarity A were determined using the mass-
radius and the radius of gyration methods. The mass-radius
method consists of counting the number of particles M in a
hypersphere of radius r centered at the origin. We expect a
power law relation for self-similar clusters,

M�r� = Amrdf , �5�

where the amplitude Am is a measure of the lacunarity. To be
more precise, the DLA clusters are characterized by a multi-
scaling, which leads to a slow convergence to the asymptotic
scaling exponents. However, large-scale simulations confirm
that these clusters are asymptotically fractal. For details, see
Refs. �1,22�. The radius of gyration rg is defined as

rg = 
 1

N
�
i=1

N

ri
2�1/2

, �6�

where ri is the distance from the origin of the ith aggregated
particle and N the total number of particles in the cluster. The

gyration radius scales with the number of particles as

rg = BN�, �7�

where �=1/df and B can be related to the lacunarity through
the relation

Ag =
1

B1/� . �8�

Notice that Am�Ag since their definitions are different. But
they exhibit the same qualitative behavior because Am�Ag.

In Fig. 3�a�, the double logarithm plots of the curves M�r�
against r are shown for several Pba values. The slope con-
tinuously increases from df =1.723±0.007 for Pba=0.10 �a
value close to the well-known DLA fractal dimension df
=1.715±0.004 �18�� toward 2.0 as Pba increases, as can be
seen in Fig. 3�b�, in which the fractal dimension is plotted as
a function of Pba. Remarkably, instead of the qualitative be-
havior observed for the fractal dimension �an increasing
function of Pba�, the lacunarity is a convex function of Pba
with a maximum at Pba�1/2, as shown in the inset of Fig.
3�a�. These results show that if the number of DLA particles
is larger than the number of BA ones, an increasing Pba pro-
duces patterns with more dense branches �larger df values�
but with larger empty regions �larger lacunarity�. However,
when the number of BA particles exceeds the number of
DLA ones, the width of the branches increases while the size
of the empty regions decreases with Pba. An explanation for
such a behavior can be obtained from the active zone analy-
sis described next.

We define the active zone as the fraction f of the latest
particles added to the cluster, and its width � f as the standard
deviation of the distances from the origin of these particles.
So,

� f
2 =

1

fN
�
i=Nf

N

�ri − r��2, �9�

where Nf = �1− f�N and

r� =
1

fN
�
i=Nf

N

ri. �10�

In all simulations, we used f =0.1. In Fig. 4, the width of
the active zone as a function of the number of particles is

FIG. 2. Growth patterns for
distinct values of the parameter
Pba: �a� 0.1, �b� 0.3, �c� 0.5, �d�
0.7, �e� 0.9, �f� 0.95, and �h� 0.99.
All simulations are stopped when
the cluster reaches the border of a
region 750�750 centered at the
origin. The number of particles
varies from N�3�104 �Pba

=0.1� to N�1.6�105 �Pba

=0.99�.
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shown for two distinct Pba values. For Pba�0.5, the simula-
tions indicate that there is a single power law regime �

�N� while a crossover between two power laws ��N�� for
small length scales and ��N� for large ones is observed for
Pba�0.5. In the asymptotic regime �N→��, the exponent
�→� for p�1 as observed in the DLA model �18�. For
Pba�0.5, we found ���0.46, 0.42, and 0.36 for Pba=0.5,
0.7, and 0.9, respectively. Indeed, our simulation suggests
that ��→0.33 as Pba→1, in agreement with the statement
that interface scaling of the BA belongs to the Kardar-Parisi-
Zhang universality class �23�. To be more precise, the inter-

face scaling of ballistic deposition models was widely stud-
ied and rigorous simulations confirmed that ��N1/3 �1,24�.

A very interesting feature emerges from the behavior of �
as a function of Pba for a fixed mean radius of the active
zone, as shown in the inset of Fig. 4. The active zone width
is a convex function of Pba with a maximum at Pba=1/2,
which explains the lacunarity dependence on Pba. The onset
of this qualitative behavior can be understood through an
analysis of the screening properties of the clusters: for Pba
�0, the patterns have large grooves and the ballistic trajec-
tories can reach the inner regions of the cluster forbidden for
random walks. Thus, the screening is reduced in relation to
the original DLA model and, consequently, the active zone is
enlarged. As Pba increases, more particles break the screen-
ing enlarging the active zone. However, if too many particles
arrive at the inner regions of the clusters, the size of their
grooves and, consequently, their active zones are reduced.
Therefore, the convexity of � versus Pba was elucidated.
Intriguingly, this change of behavior seems to occur when
the number of DLA and BA particles are equal, but we can-
not provide a rigorous justification besides the numerical evi-
dence.

One of the most complex features of DLA clusters is their
multiscaling structures �5,16,17�, which were recently ana-
lyzed by Mandelbrot et al. at the light of the angular gap
distributions of the clusters �5�. They found that the angular
and radial distributions of mass scale with the same exponent
D�1.71 only for very small angular gaps. This happens for
asymptotically large clusters �M �108� when the number of
main branches increases leading to a more uniform space
fulfillment. From Fig. 2, one can see that angular gap distri-
butions vary with the parameter Pba. Therefore, an angular
scaling analysis becomes necessary in order to obtain a more
elaborate characterization of the model. For this task, we

FIG. 3. �a� Mass against radius for distinct Pba values: 0.10,
0.20, 0.30, 0.40, 0.50, 0.70, 0.90, and 0.99 from the bottom to the
top. �b� Fractal dimension as a function of Pba determined from the
mass-radius ��� and gyration-radius ��� methods. In the inset, we
show the lacunarity as a function of Pba obtained from mass-radius
��� and radius of gyration ��� methods. For these simulations, we
used clusters of size L=104 and averages done over 103 indepen-
dent samples. The number of particles in these clusters varies from
7�106 for Pba=0.1 to 3�107 for Pba=0.99.

FIG. 4. Active zone width � as a function of the number of
particles for Pba=0.20 ��� and 0.90 ���. The straight lines corre-
spond to power law fits. In the inset, we show � as a function of Pba

for a mean active zone radius r�340. The line is a cubic fit used as
a guide to the eyes. For these simulations, we used clusters of size
L=104 and averages were done over 103 independent samples.
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followed the work of Meakin and Vicsek �15�, in which they
analyzed the angular correlations of the DLA model using
the following procedure. A narrow circular shell of radius R
and width 
R�R centered at the origin is divided in K iden-
tical sectors of area R

R, where 
=2� /K. For a box
centered at the polar coordinates �R ,��, the quantity �R���
=� is defined, where � is the number of particles within this
box. The two-point angular correlation function is given by

�R�� =
1

N
�
n=0

K/2

�R� + n
��R�n
� . �11�

The exponent obtained for the relatively small DLA clusters
��105� using this procedure was ��0.41, which is defi-
nitely different from �r�0.29.

Figure 5 illustrates the angular correlation functions
evaluated at R=300 for distinct Pba values. In all curves,
�R�� decays as a power law for small angles followed by a
global minimum and reaches a constant value for large
angles. This behavior qualitatively reproduces the finds by
Meakin and Vicsek �15�, but the power law exponents decay
with Pba as illustrated in the inset of Fig. 5, in which � and
�r, as well as the difference between them, ��, are plotted as
functions of Pba. The exponent �r was determined using the
relation �r=2−df, where df is the mean fractal dimension
obtained through the mass-radius and radius of gyration
methods �Fig. 3�b��. The difference ���0.12 observed for
the DLA model decreases with Pba. The minima of the
curves are interesting quantities since they represent esti-
mates of the half angular separation between two consecutive
branches, the gaps studied by Mandelbrot et al. �5�. The
minima position shift to small angles and become less evi-

dent with increasing Pba. Indeed, the extrapolation of mini-
mum positions suggests that their values vanish at Pba=1
following a power law min��1− Pba��, where ��0.45, as
shown in Fig. 6. The minima were determined using a cubic
fit around their positions, as indicated in the insets of Fig. 6.
This power law relation means that the angular gaps are
present, even that small, for any Pba�1. However, one can
resolve from the inset of Fig. 5 the difference �� vanishing
for Pba�0.5. This behavior of �� agrees with the conclud-
ing claim of Mandelbrot et al. �5� concerning the asymptotic
scaling of ordinary off-lattice DLA clusters. Indeed, in our
model the gaps are reduced with increasing Pba and, conse-
quently, we observed the same result of Ref. �5�, but without
considering simulations with more than 108 particles.

IV. SUMMARY

In this work, we analyzed an aggregation model in which
two kinds of particles are considered: a given fraction fol-
lowing Brownian motions and the remaining following bal-
listic trajectories. The model, which includes diffusion-
limited aggregation �DLA� and ballistic aggregation �BA�
models as limit cases, is controlled by a probability Pba that
corresponds to the fraction of BA particles that constitutes
the aggregate. Large-scale simulations and careful statistical
sampling were used to characterize the radial and angular
scaling of off-lattice aggregates. Specifically, we measured
the fractal dimension df, the lacunarity, the width of active
�growing� zone �, and the angular correlation function �R of
clusters grown for distinct Pba values.

The fractal dimension df continuously increases from df
=1.715±0.004 for Pba=0 �DLA fractal dimension� to df �2

FIG. 5. Two-point angular correlation functions evaluated at R
=300 for several values of Pba: 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9 from
the bottom to the top, respectively. The dashed lines correspond to
the power law fits for small . In the inset, the angular and radial
correlation function exponents are compared. The size of the clus-
ters is 5000�5000 and �R was evaluated using R=300 and 
R
=15. The averages were done over N=103 independent samples.

FIG. 6. Behavior of the minima presented in angular correlation
functions for distinct probabilities Pba. The dashed line is a power-
law fit corresponding to an exponent ��0.45. Data in the range
Pba� �0.1,0.95� are shown. The insets show the linear plots of �R

for the regions near the minima for Pba=0.7 �bottom� and Pba

=0.9 �top�. The solid lines are the cubic fits used to determine the
positions of the minima.
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�BA fractal dimension�. However, the lacunarity and the
width of the active zone for a fixed radius are convex func-
tions of the probability Pba with maxima at Pba�1/2. The
convexity of the lacunarity is directly related to the convex-
ity of the active zone width, which in turn was explained by
the screening impairing the wandering particles to reach the
inner regions of the clusters.

The angular correlation function �R�� evaluated at R
=300 exhibits a power law decay for small angles with an
exponent that is a decreasing function of Pba. The difference
between angular and radial exponents observed for the origi-
nal off-lattice DLA model �15� was found, but it rapidly
vanishes for Pba�1/2. Also, the curves �R versus  exhibit
global minima representing the half angular separations be-
tween two consecutive branches. The simulations show that
the position of the minima vanishes as Pba→1 following a

power law min� �1− Pba�� with ��0.45. These results in-
dicate that the patterns are asymptotically homogeneous
when Pba→1. In summary, in this work we show how the
scaling properties of the aggregates can be controled by
varying the concentration of the kinds of wandering particles
involved in the growth process. Finally, it is important to
emphasize that these results are in agreement with the angu-
lar gap distribution analysis performed by Mandelbrot et al.
�5�, in which they found that the original DLA clusters ex-
hibit the same asymptotic angular and radial scaling.
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